Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Clin J Am Soc Nephrol ; 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2268571

ABSTRACT

Kidney replacement therapy (KRT) is a vital, supportive treatment for patients with critical illness and severe AKI. The optimal timing, dose, and modality of KRT have been studied extensively, but gaps in knowledge remain. With respect to modalities, continuous KRT and intermittent hemodialysis are well-established options, but prolonged intermittent KRT is becoming more prevalent worldwide, particularly in emerging countries. Compared with continuous KRT, prolonged intermittent KRT offers similar hemodynamic stability and overall cost savings, and its intermittent nature allows patients time off therapy for mobilization and procedures. When compared with intermittent hemodialysis, prolonged intermittent KRT offers more hemodynamic stability, particularly in patients who remain highly vulnerable to hypotension from aggressive ultrafiltration over a shorter duration of treatment. The prescription of prolonged intermittent KRT can be tailored to patients' progression in their recovery from critical illness, and the frequency, flow rates, and duration of treatment can be modified to avert hemodynamic instability during de-escalation of care. Dosing of prolonged intermittent KRT can be extrapolated from urea kinetics used to calculate clearance for continuous KRT and intermittent hemodialysis. Practice variations across institutions with respect to terminology, prescription, and dosing of prolonged intermittent KRT create significant challenges, especially in creating specific drug dosing recommendations during prolonged intermittent KRT. During the coronavirus disease 2019 pandemic, prolonged intermittent KRT was rapidly implemented to meet the KRT demands during patient surges in some of the medical centers overwhelmed by sheer volume of patients with AKI. Ideally, implementation of prolonged intermittent KRT at any institution should be conducted in a timely manner, with judicious planning and collaboration among nephrology, critical care, dialysis and intensive care nursing, and pharmacy leadership. Future analyses and clinical trials with respect to prescription and delivery of prolonged intermittent KRT and clinical outcomes will help to guide standardization of practice.

3.
Critical care explorations ; 4(12), 2022.
Article in English | EuropePMC | ID: covidwho-2147443

ABSTRACT

IMPORTANCE: Multistate models yield high-fidelity analyses of the dynamic state transition and temporal dimensions of a clinical condition’s natural history, offering superiority over aggregate modeling techniques for addressing these types of problems. OBJECTIVES: To demonstrate the utility of these models in critical care, we examined acute kidney injury (AKI) development, progression, and outcomes in COVID-19 critical illness through multistate analyses. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study at an urban tertiary-care academic hospital in the United States. All patients greater than or equal to 18 years in an ICU with COVID-19 in 2020, excluding patients with preexisting end-stage renal disease. MAIN OUTCOMES AND MEASURES: Using electronic health record data, we determined AKI presence/stage in discrete 12-hour time windows and fit multistate models to determine longitudinal transitions and outcomes. RESULTS: Of 367 encounters, 241 (66%) experienced AKI (maximal stages: 88 stage-1, 49 stage-2, 104 stage-3 AKI [51 received renal replacement therapy (RRT), 53 did not]). Patients receiving RRT overwhelmingly received invasive mechanical ventilation (IMV) (n = 60, 95%) compared with the AKI-without-RRT (n = 98, 53%) and no-AKI groups (n = 39, 32%;p < 0.001), with similar mortality patterns (RRT: n = 36, 57%;AKI: n = 74, 40%;non-AKI: n = 23, 19%;p < 0.001). After 24 hours in the ICU, almost half the cohort had AKI (44.9%;95% CI, 41.6–48.2%). At 7 days after stage-1 AKI, 74.0% (63.6–84.4) were AKI-free or discharged. By contrast, fewer patients experiencing stage-3 AKI were recovered (30.0% [24.1–35.8%]) or discharged (7.9% [5.2–10.7%]) after 7 days. Early AKI occurred with similar frequency in patients receiving and not receiving IMV: after 24 hours in the ICU, 20.9% of patients (18.3–23.6%) had AKI and IMV, while 23.4% (20.6–26.2%) had AKI without IMV. CONCLUSIONS AND RELEVANCE: In a multistate analysis of critically ill patients with COVID-19, AKI occurred early and heterogeneously in the course of critical illness. Multistate methods are useful and underused in ICU care delivery science as tools for understanding trajectories, prognoses, and resource needs.

4.
Clin J Am Soc Nephrol ; 16(10): 1601-1609, 2021 10.
Article in English | MEDLINE | ID: covidwho-1502239

ABSTRACT

AKI is a common complication in hospitalized and critically ill patients. Its incidence has steadily increased over the past decade. Whether transient or prolonged, AKI is an independent risk factor associated with poor short- and long-term outcomes, even if patients do not require KRT. Most patients with early AKI improve with conservative management; however, some will require dialysis for a few days, a few weeks, or even months. Approximately 10%-30% of AKI survivors may still need dialysis after hospital discharge. These patients have a higher associated risk of death, rehospitalization, recurrent AKI, and CKD, and a lower quality of life. Survivors of critical illness may also suffer from cognitive dysfunction, muscle weakness, prolonged ventilator dependence, malnutrition, infections, chronic pain, and poor wound healing. Collaboration and communication among nephrologists, primary care physicians, rehabilitation providers, physical therapists, nutritionists, nurses, pharmacists, and other members of the health care team are essential to create a holistic and patient-centric care plan for overall recovery. Integration of the patient and family members in health care decisions, and ongoing education throughout the process, are vital to improve patient well-being. From the nephrologist standpoint, assessing and promoting recovery of kidney function, and providing appropriate short- and long-term follow-up, are crucial to prevent rehospitalizations and to reduce complications. Return to baseline functional status is the ultimate goal for most patients, and dialysis independence is an important part of that goal. In this review, we seek to highlight the varying aspects and stages of recovery from AKI complicating critical illness, and propose viable strategies to promote recovery of kidney function and dialysis independence. We also emphasize the need for ongoing research and multidisciplinary collaboration to improve outcomes in this vulnerable population.


Subject(s)
Acute Kidney Injury/therapy , Kidney/physiopathology , Renal Dialysis , Acute Kidney Injury/diagnosis , Acute Kidney Injury/mortality , Acute Kidney Injury/physiopathology , Critical Illness , Humans , Recovery of Function , Renal Dialysis/adverse effects , Renal Dialysis/mortality , Risk Assessment , Risk Factors , Treatment Outcome
6.
ASAIO J ; 67(10): 1087-1096, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1443140

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged into a worldwide pandemic of epic proportion. Beyond pulmonary involvement in coronavirus disease 2019 (COVID-19), a significant subset of patients experiences acute kidney injury. Patients who die from severe disease most notably show diffuse acute tubular injury on postmortem examination with a possible contribution of focal macro- and microvascular thrombi. Renal biopsies in patients with proteinuria and hematuria have demonstrated a glomerular dominant pattern of injury, most notably a collapsing glomerulopathy reminiscent of findings seen in human immunodeficiency virus (HIV) in individuals with apolipoprotein L-1 (APOL1) risk allele variants. Although various mechanisms have been proposed for the pathogenesis of acute kidney injury in SARS-CoV-2 infection, direct renal cell infection has not been definitively demonstrated and our understanding of the spectrum of renal involvement remains incomplete. Herein we discuss the biology, pathology, and pathogenesis of SARS-CoV-2 infection and associated renal involvement. We discuss the molecular biology, risk factors, and pathophysiology of renal injury associated with SARS-CoV-2 infection. We highlight the characteristics of specific renal pathologies based on native kidney biopsy and autopsy. Additionally, a brief discussion on ancillary studies and challenges in the diagnosis of SARS-CoV-2 is presented.


Subject(s)
Acute Kidney Injury , COVID-19/complications , Kidney/pathology , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , COVID-19/pathology , Humans , Kidney Tubular Necrosis, Acute/pathology , SARS-CoV-2
7.
JAMA Intern Med ; 180(11): 1436-1447, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-966903

ABSTRACT

Importance: The US is currently an epicenter of the coronavirus disease 2019 (COVID-19) pandemic, yet few national data are available on patient characteristics, treatment, and outcomes of critical illness from COVID-19. Objectives: To assess factors associated with death and to examine interhospital variation in treatment and outcomes for patients with COVID-19. Design, Setting, and Participants: This multicenter cohort study assessed 2215 adults with laboratory-confirmed COVID-19 who were admitted to intensive care units (ICUs) at 65 hospitals across the US from March 4 to April 4, 2020. Exposures: Patient-level data, including demographics, comorbidities, and organ dysfunction, and hospital characteristics, including number of ICU beds. Main Outcomes and Measures: The primary outcome was 28-day in-hospital mortality. Multilevel logistic regression was used to evaluate factors associated with death and to examine interhospital variation in treatment and outcomes. Results: A total of 2215 patients (mean [SD] age, 60.5 [14.5] years; 1436 [64.8%] male; 1738 [78.5%] with at least 1 chronic comorbidity) were included in the study. At 28 days after ICU admission, 784 patients (35.4%) had died, 824 (37.2%) were discharged, and 607 (27.4%) remained hospitalized. At the end of study follow-up (median, 16 days; interquartile range, 8-28 days), 875 patients (39.5%) had died, 1203 (54.3%) were discharged, and 137 (6.2%) remained hospitalized. Factors independently associated with death included older age (≥80 vs <40 years of age: odds ratio [OR], 11.15; 95% CI, 6.19-20.06), male sex (OR, 1.50; 95% CI, 1.19-1.90), higher body mass index (≥40 vs <25: OR, 1.51; 95% CI, 1.01-2.25), coronary artery disease (OR, 1.47; 95% CI, 1.07-2.02), active cancer (OR, 2.15; 95% CI, 1.35-3.43), and the presence of hypoxemia (Pao2:Fio2<100 vs ≥300 mm Hg: OR, 2.94; 95% CI, 2.11-4.08), liver dysfunction (liver Sequential Organ Failure Assessment score of 2-4 vs 0: OR, 2.61; 95% CI, 1.30-5.25), and kidney dysfunction (renal Sequential Organ Failure Assessment score of 4 vs 0: OR, 2.43; 95% CI, 1.46-4.05) at ICU admission. Patients admitted to hospitals with fewer ICU beds had a higher risk of death (<50 vs ≥100 ICU beds: OR, 3.28; 95% CI, 2.16-4.99). Hospitals varied considerably in the risk-adjusted proportion of patients who died (range, 6.6%-80.8%) and in the percentage of patients who received hydroxychloroquine, tocilizumab, and other treatments and supportive therapies. Conclusions and Relevance: This study identified demographic, clinical, and hospital-level risk factors that may be associated with death in critically ill patients with COVID-19 and can facilitate the identification of medications and supportive therapies to improve outcomes.


Subject(s)
COVID-19/mortality , Critical Illness/mortality , Intensive Care Units , Adult , Age Factors , Aged , Aged, 80 and over , Critical Illness/therapy , Female , Hospital Mortality , Humans , Male , Middle Aged , Pandemics , Risk Factors , United States
8.
J Am Soc Nephrol ; 32(1): 161-176, 2021 01.
Article in English | MEDLINE | ID: covidwho-966902

ABSTRACT

BACKGROUND: AKI is a common sequela of coronavirus disease 2019 (COVID-19). However, few studies have focused on AKI treated with RRT (AKI-RRT). METHODS: We conducted a multicenter cohort study of 3099 critically ill adults with COVID-19 admitted to intensive care units (ICUs) at 67 hospitals across the United States. We used multivariable logistic regression to identify patient-and hospital-level risk factors for AKI-RRT and to examine risk factors for 28-day mortality among such patients. RESULTS: A total of 637 of 3099 patients (20.6%) developed AKI-RRT within 14 days of ICU admission, 350 of whom (54.9%) died within 28 days of ICU admission. Patient-level risk factors for AKI-RRT included CKD, men, non-White race, hypertension, diabetes mellitus, higher body mass index, higher d-dimer, and greater severity of hypoxemia on ICU admission. Predictors of 28-day mortality in patients with AKI-RRT were older age, severe oliguria, and admission to a hospital with fewer ICU beds or one with greater regional density of COVID-19. At the end of a median follow-up of 17 days (range, 1-123 days), 403 of the 637 patients (63.3%) with AKI-RRT had died, 216 (33.9%) were discharged, and 18 (2.8%) remained hospitalized. Of the 216 patients discharged, 73 (33.8%) remained RRT dependent at discharge, and 39 (18.1%) remained RRT dependent 60 days after ICU admission. CONCLUSIONS: AKI-RRT is common among critically ill patients with COVID-19 and is associated with a hospital mortality rate of >60%. Among those who survive to discharge, one in three still depends on RRT at discharge, and one in six remains RRT dependent 60 days after ICU admission.


Subject(s)
Acute Kidney Injury/therapy , Acute Kidney Injury/virology , COVID-19/complications , Critical Care , Renal Replacement Therapy , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Incidence , Logistic Models , Male , Middle Aged , Risk Factors , Survival Rate , United States , Young Adult
10.
Nat Rev Nephrol ; 16(12): 747-764, 2020 12.
Article in English | MEDLINE | ID: covidwho-872710

ABSTRACT

Kidney involvement in patients with coronavirus disease 2019 (COVID-19) is common, and can range from the presence of proteinuria and haematuria to acute kidney injury (AKI) requiring renal replacement therapy (RRT; also known as kidney replacement therapy). COVID-19-associated AKI (COVID-19 AKI) is associated with high mortality and serves as an independent risk factor for all-cause in-hospital death in patients with COVID-19. The pathophysiology and mechanisms of AKI in patients with COVID-19 have not been fully elucidated and seem to be multifactorial, in keeping with the pathophysiology of AKI in other patients who are critically ill. Little is known about the prevention and management of COVID-19 AKI. The emergence of regional 'surges' in COVID-19 cases can limit hospital resources, including dialysis availability and supplies; thus, careful daily assessment of available resources is needed. In this Consensus Statement, the Acute Disease Quality Initiative provides recommendations for the diagnosis, prevention and management of COVID-19 AKI based on current literature. We also make recommendations for areas of future research, which are aimed at improving understanding of the underlying processes and improving outcomes for patients with COVID-19 AKI.


Subject(s)
Acute Kidney Injury/therapy , Acute Kidney Injury/virology , COVID-19/complications , COVID-19/therapy , Renal Replacement Therapy/methods , Acute Kidney Injury/diagnosis , Acute Kidney Injury/pathology , Anticoagulants/therapeutic use , Consensus , Humans , Risk Factors , SARS-CoV-2
11.
Adv Chronic Kidney Dis ; 27(5): 377-382, 2020 09.
Article in English | MEDLINE | ID: covidwho-796111

ABSTRACT

Acute kidney injury is a common complication in hospitalized patients with coronavirus disease 2019. Similar to acute kidney injury associated with other conditions such as sepsis and cardiac surgery, morbidity and mortality are much higher in patients with coronavirus disease 2019 who develop acute kidney injury, especially in the intensive care unit. Management of coronavirus disease 2019-associated acute kidney injury with kidney replacement therapy should follow existing recommendations regarding modality, dose, and timing of initiation. However, patients with coronavirus disease 2019 are very hypercoagulable, and close vigilance to anticoagulation strategies is necessary to prevent circuit clotting. During situations of acute surge, where demand for kidney replacement therapy outweighs supplies, conservative measures have to be implemented to safely delay kidney replacement therapy. A collaborative effort and careful planning is needed to conserve dialysis supplies, to ensure that treatment can be safely delivered to every patient who will benefit for kidney replacement therapy.


Subject(s)
Acute Kidney Injury/therapy , Anticoagulants/therapeutic use , COVID-19/therapy , Renal Replacement Therapy/methods , Thrombophilia/drug therapy , COVID-19/blood , Catheterization, Central Venous , Central Venous Catheters , Citric Acid/therapeutic use , Continuous Renal Replacement Therapy/methods , Hemodialysis Solutions/supply & distribution , Hemoperfusion/methods , Heparin/therapeutic use , Humans , Hybrid Renal Replacement Therapy/methods , Intermittent Renal Replacement Therapy/methods , Kidneys, Artificial/supply & distribution , Partial Thromboplastin Time , Renal Replacement Therapy/instrumentation , SARS-CoV-2 , Surge Capacity , Thrombophilia/blood
SELECTION OF CITATIONS
SEARCH DETAIL